4. **Theoretical & Practical Coverage**

INTRODUCTION

Estimating paint coverage is a key costing factor for both owners, vessel operators, shipyards and contractors.

On site, practical coverage is a function of many factors, with losses due to surface condition, paint distribution, application procedure, ambient weather conditions and wastage being the major factors in determining the volume of paint required for a given specification. At the initial costing stage, however, paint usage is calculated from the quoted “volume solids”.

The variety of methods used by different manufacturers to calculate, or determine “volume solids” can lead to confusion and misunderstanding, particularly when comparisons between paint systems are being made. These notes are intended to guide users and specifiers both in the practical assessment of paint losses, and in their theoretical calculations.

The technique and approach described have been adopted by International Marine Coatings throughout its worldwide organisation.

VOLUME SOLIDS

The volume solids of a coating is the ratio of the volume of its non volatile components to its total wet volume.

Traditionally, this figure was calculated from the paint formulation but, since this took no account of factors such as pigment packing, solvent retention, or film contraction, the value bore little relation to that obtained in practice. Also, since these factors vary in importance between paint types, the calculated volume solids can result in an underestimation of coverage of some generic types of paint and an overestimation of others.

To overcome this problem, International Marine Coatings (and most other manufacturers) use a more practical method to establish a paint’s “volume solids”.

The method used measures the dry film thickness obtained from a measured wet film thickness, and volume solids is given by:

\[
\text{Volume solids} = \frac{\text{measured dft} \times 100}{\text{measured wft}}
\]

MEASUREMENT OF VOLUME SOLIDS IN THE LABORATORY

The volume solids figure given in the product datasheets is the percentage of the film obtained from a given wet film thickness under specified application method and conditions. These figures have been determined under laboratory conditions using the test method described in ISO 3233:1998/Corr 1:1999 “Determination of Volume Solids by Measurement of Dry Film Density”. For North America, volume solids are measured by ASTM D-2697 which determines the volume solids of a coating using the recommended dry film thickness of the coating quoted on the product data sheet, and a specified drying schedule at ambient temperature, i.e. 7 days at 25°C ± 1°C.
SPECIAL SITUATIONS
- ZINC PAINTS

The volume solids of such paints are determined by different means because they are so highly pigmented. The high pigment loading means that the dry film contains voids and the extent of the voids is dependent, to some extent, on the techniques of application. An alternative method of measuring volume solids has therefore been used to circumvent the variable void content of the dry film and thus provide a reliable figure. Details of the methods used will be given on request. In general a modification of ASTM D-2697 gives the most meaningful results and is used on International Marine Coatings Product Datasheets.

THEORETICAL COVERAGE DETERMINATION FROM VOLUME SOLIDS

The theoretical coverage can be determined from the two formulae below:

Formula 1 (Metric)

\[
\text{volume solids (\%)} \times \frac{10}{\text{measured dft (in microns)}} = \text{Theoretical Coverage (m}^2/\text{ltr)}
\]

Formula 2 (US Measure)

\[
\text{volume solids (\%)} \times 16.04 \div \text{measured dft (in mils)} = \text{Theoretical Coverage (sq.ft/US gallon)}
\]

CONVERSION FROM THEORETICAL TO PRACTICAL COVERAGE

INTRODUCTION

Estimating accurately the quantity of paint required for a particular job is complicated, since the theoretical coverage takes no account of the variable “losses” involved in converting paint in the can to a film on the chosen surfaces. Experienced contractors, with their knowledge of local conditions and their workforce etc., are best able to produce accurate estimates. These notes are intended to supplement this experience by highlighting the major areas of “losses”. Two types of loss are considered; “apparent losses” where the paint, though on the surface, does not contribute to the specified thickness, and “actual losses”, where the paint is lost or wasted.

By far the biggest discrepancy in practice results from an inability to distribute paint evenly. Measured dry film thickness at any one point is either well below or above the target thickness. It may be stipulated that the measured thickness should not fall below a minimum. Typically such guide lines take the form: “90% of readings will be at the specified thickness or better and no reading will be less than 80% of specified”. Attempts to ensure that the minimum thickness requirements are met everywhere, mean applying more paint than the calculated “theoretical”.

THE EFFECT OF BLAST PROFILE

When paint is applied to an abrasive blasted surface, the paint thickness over the peaks on the surface is less than the thickness over the troughs.

However, in general, it is the thickness over the peaks which is most important in relation to performance. Therefore, it can be considered that the paint which does not contribute to this thickness is “lost in the steel profile”.

The surface profile produced by blasting and hence the extent of the paint “loss” is proportional to the dimensions of the abrasive used.
Where steel has been blasted by small round steel shot and shop primed, the influence of the fine surface roughness on paint loss is low, but when in situ blasting is carried out, particularly with coarse grit, then the allowance necessary for paint “lost on profile” is considerable.

Typical “losses” in dry paint film thickness for given blast profiles are suggested below:

<table>
<thead>
<tr>
<th>Surface</th>
<th>Blast Profile</th>
<th>DFT “Loss”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel preparation by wheelabrator using round steel shot and shop primed</td>
<td>0-50 microns (0-2 mils)</td>
<td>10 microns (0.4 mils)</td>
</tr>
<tr>
<td>Fine open blasting (80 mesh)</td>
<td>50-100 microns (2-4 mils)</td>
<td>35 microns (1.4 mils)</td>
</tr>
<tr>
<td>Coarse open blasting (12 mesh)</td>
<td>100-150 microns (4.6 mils)</td>
<td>60 microns (2.4 mils)</td>
</tr>
<tr>
<td>Old “honeycomb pitted” steel - reblasted</td>
<td>150-300 microns (6-12 mils)</td>
<td>125 microns (5 mils)</td>
</tr>
</tbody>
</table>

(Note: For the shop primers and holding primers which are applied at low film thickness, the concept of losses in the blast profile is not appropriate. These thin coatings are not normally considered to contribute to the total film thickness of the paint system.)

PAINT DISTRIBUTION

This is the loss of paint resulting from over-application when a competent painter is attempting to achieve, with reasonable accuracy, the minimum thickness specified. The extra paint used over and above that calculated from the theoretical spreading rate is very dependent on the method of application, i.e. brush, roller or spray, and also on the type of structure being painted. A simple (uncomplicated) shape with a high proportion of flat surfaces should not incur heavy losses but if there are stiffeners or open lattice work involved then obviously losses will be high.

The following approximate over-applications are suggested as being appropriate:

Brush & Roller
- Simple structures: “Loss” 5%
- Complex structures: 10-15% (including stripe coat)

Spray
- Simple structures: “Loss” 20%
- Complex structures: 60% for single coat (including stripe coat)
 - 40% for two coats
 - 30% for three coats

Where open lattice work is sprayed, no realistic estimate can be made of paint distribution loss.
In those special cases where the specification calls for a minimum thickness at all measured points, then the distribution losses would be greater than those indicated above.

ACTUAL LOSSES – APPLICATION

There is a real loss of paint during the painting operation, i.e. paint which drips from a brush or roller during the transfer from the paint container to the surface to be painted. With care this can be disregarded as a significant contribution to the overall “loss”. The use of “man helps” to extend the painter’s reach however can increase this type of loss, and in an extreme case could result in a 5% loss.

When application is by spray, losses are inevitable and their magnitude is dependent on the shape of the structure being painted, together with weather conditions.

The following losses are common:

- Well ventilated but confined space - 5%
- Outdoors in almost static air - 5–10%
- Outdoors in windy conditions - over 20% (obviously this figure can become exceptionally high if painting is attempted in unsuitable windy conditions)

PAINT WASTAGE

Some paint wastage is inevitable; paint is spilt, a certain amount remains in discarded containers; and in the case of two component materials, mixed paint may be left beyond its pot life.

The following losses are common:

- Single component paints - No more than 5%
- Two component paints - 5-10%

SUMMARY OF LOSSES

Paint losses are summarised in the table:

<table>
<thead>
<tr>
<th>Loss Factor</th>
<th>Source of Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent loss</td>
<td>Surface profile</td>
</tr>
<tr>
<td>1.1</td>
<td>Distribution</td>
</tr>
<tr>
<td>Actual loss</td>
<td>Application losses</td>
</tr>
<tr>
<td>2.1</td>
<td>Wastage</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

Factor 1.1 effectively applies to the first coat. Factors 1.1 and 1.2 should be added and 2.1 and 2.2 compounded.
Given the theoretical coverage and the preceding loss factors, it is possible to calculate a practical coverage. However, due to the extremely complex nature of the calculations, and variability of a number of external factors which include surface roughness, ambient climatic conditions, complexity of structure, access limitations and application methods, it is advised that these calculations are performed by professional estimators who have the appropriate knowledge and experience of the application of marine coatings under various site conditions.

The following example illustrates the calculation of practical coverage, using the loss factors described:

Example:

Two coats of two pack paint are applied by spray in a confined space to a shot blasted and shop primed surface to yield a dft per coat of 125 microns/5 mils (i.e. 250 microns/10 mils total dft). Theoretical spreading rate for the paint at the recommended film thickness is 5.0m²/litre, 204 sqft/gal. What is the practical spreading rate?

<table>
<thead>
<tr>
<th>Loss Factor</th>
<th>Consider 1st Coat:</th>
<th>125 microns</th>
<th>5 mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 “Loss” due to surface roughness</td>
<td>10 microns</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>1.2 “Loss” due to distribution – 40% i.e. dft x 0.4</td>
<td>50 microns</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dft 185 microns</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>2.1 Loss due to application – 5% i.e. dft x 0.05</td>
<td>9.25 microns</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dft 194.25 microns</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>2.2 Loss due to wastage – 10% i.e. dft x 0.1</td>
<td>19.42 microns</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total dft 213.67 microns</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>Extra paint used</td>
<td>213.67 - 125 = 88.67 x 100</td>
<td>8.6 - 5 = 3.6 x 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 71%</td>
<td>= 71%</td>
<td></td>
</tr>
<tr>
<td>Loss Factor</td>
<td>Consider 2nd Coat:</td>
<td>125 microns</td>
<td>5 mils</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>1.1</td>
<td>“Loss” due to surface roughness</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.2</td>
<td>“Loss” due to distribution – 40% i.e. dft x 0.4</td>
<td>50 microns</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>dft 175 microns</td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td>2.1</td>
<td>Loss due to application – 5% i.e. dft x 0.05</td>
<td>8.75 microns</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>dft 183.75 microns</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td>2.2</td>
<td>Loss due to wastage – 10% i.e. dft x 0.1</td>
<td>18.37 microns</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Total dft 202.12 microns</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>Extra paint used</td>
<td>202.12 – 125 = 77.12x100 [\text{125}]</td>
<td>8.1 – 5 = 3.1x100 [\text{125}]</td>
<td>5</td>
</tr>
</tbody>
</table>

In other words for the two coat system

\[(71 + 62)\% = 66.5\%\]
\[\left(\frac{2}{2}\right)\]

more paint has been needed than would have been calculated from the ideal spreading rate.

In the example the theoretical spreading rate is one litre of paint per 5 sq.metres or 1 US gallon of paint per 204 sq. feet. In practice 1.66 litres of paint can be expected to cover 5 sq.metres or 1.66 US gallons can be expected to cover 204 sq.ft.

Practical spreading rate

\[\frac{5}{1.66} = 3\text{m}^2/\text{litre} \quad \text{or} \quad \frac{204}{1.66} = 123\text{ sq ft/US gallon}\]

It has been customary in our industry to refer to “loss factors” i.e. the difference between theoretical spreading rate and practical spreading rate expressed as a percentage of the theoretical spreading rate. In the above example:

Loss factor \[\frac{5 - 3 \times 100}{5} = 40\%\]

Or \[\frac{204 - 123 \times 100}{204} = 40\%\]